Preview

Concrete and Reinforced Concrete

Advanced search

Application of probabilistic approaches for the construction of «composition–property» models. Part II (Practice)

https://doi.org/10.31659/0005-9889-2022-614-6-12-24

Abstract

The results of the practical application of the ideas presented in the first part of the article published earlier are presented: models of strength, cone slump for 4-component concrete mixtures with plasticizing additives were constructed, also, models of strength and mobility for 5-component mixtures of fine-grained concrete, including mineral filler, were constructed. In particular, on the basis of the last example, the possibility of determining the consumption of active ash, maximizing the strength characteristics of concrete at a fixed consumption of cement, is shown.

About the Authors

R. O. Rezaev
IFW Institute for Theoretical Solid State Physics; Tomsk Polytechnic University
Germany

Candidate of Sciences (Physics and Mathematics)

e-mail: rezaev.roman@gmail.com 



A. A. Dmitriev
Tomsk Polytechnic University
Russian Federation

Engineer



D. V. Cherniavsky
IFW Institute for Theoretical Solid State Physics
Germany

Candidate of Sciences (Physics and Mathematics)



References

1. GOST 25192–2012. Betony. Klassifikatsiya i obshchie tekhnicheskie trebovaniya [Concrete. Classification and general technical requirements]. (In Russian).

2. GOST 7473–2010. Smesi betonnye. Tekhnicheskie usloviya [Concrete mixes. Specifications]. (In Russian).

3. GOST 26633–2015. Betony tyazhelye i melkozernistye. Tekhnicheskie usloviya [Concrete is heavy and fine-grained. Specifications]. (In Russian).

4. Kanamarlapudi, L., Jonalagadda, K.B., Jagarapu, D.C.K. et al. Different mineral admixtures in concrete: a review. <i>SN Applied Sciences</i>. 2020. Vol. 2. 760. https://doi.org/10.1007/s42452-020-2533-6

5. Glekel’ F.L. Fiziko-khimicheskie osnovy primeneniya mineral’nykh dobavok [Physical and chemical bases of application of mineral additives]. Tashkent: «FAN». 1975. 198 p.

6. Mehta P.K., High performance, high-volume fly ash concrete for sustainable development. University of California, Berkeley, 2004.

7. Falikman V.R. Polycarboxylate hyperplasticizers: yesterday, today, tomorrow. <i>Populyarnoe betonovedenie</i>. 2009. No. 2 (28), pp. 86–90. (In Russian).

8. Vovk A.I. Physical and chemical regularities of hydration and hardening of plasticized cement systems. Abstract of diss ... Doctor of Sciences (Engineering). Moscow. 1994. 36 p. (In Russian).

9. Rezaev R.O., Dmitriev A.A., Chernyavsky D.V. Application of probabilistic approaches for the construction of “composition–property” models. Part I (Theory). <i>Beton i Zhelezobeton</i> [Concrete and Reinforced Concrete]. 2022. No. 4–5 (612–613), pp. 25–37. (In Russian). DOI: https://doi.org/10.31659/0005-9889-2022-612-613-4-5-25-37

10. Kalashnikov V.I. Effektivnye vysokoprochnye i obychnye betony [Efficient high-strength and ordinary concretes]. Penza: Privolzhskii Dom znanii. 2015. 148 p.

11. Nevill’ A.M. Svoistva betona [Concrete properties]. Moscow: Stroyizdat. 1972. 344 p.

12. Akhverdov I.N. Osnovy fiziki betona [Fundamentals of concrete physics] Moscow: Stroyizdat.1981. 464 p.

13. De Larrard F. Concrete mixture proportioning. A scientific approach. London and New York, 1998. 448 p.

14. Sheikin A.E., Chekhovskii Yu.V., Brusser M.I. Struktura i svoistva tsementnykh betonov [Structure and properties of cement concretes]. Moscow: Stroyizdat. 1979. 344 p.

15. Zongjin L., Advanced concrete technology. Wiley. 2011. 528 p.

16. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology] Moscow: AVS. 2003. 499 p.

17. Belov V.V., Kuriatnikov Iu.Iu., Novichenkova T.B., Tehnologiia i svoistva sovremennyh cementov i betonov [Technology and properties of modern cements and concretes]. Moscow: ASV. 2014. 280 p.

18. Belov V.V. Theoretical substantiation of optimal grain compositions of composite materials with mineral fillers. <i>Stroitel’stvo i rekonstruktsiya</i>. 2017. No. 5, pp. 94–101.

19. Karpenko V.I. Concrete based on ash and slag mixtures. <i>Beton i Zhelezobeton</i> [Concrete and Reinforced Concrete]. 1975. No. 10, pp, 20–30. (In Russian)

20. Mikhailov K.V., Buzhevich G.A., The use of ashes and slags from thermal power plants in concrete and reinforced concrete structures. <i>Beton i Zhelezobeton</i> [Concrete and Reinforced Concrete]. 1972. No. 7. (In Russian).

21. Tarasova A.Yu. High mobility concrete mixtures with fly ash for transport construction. Abstract of diss ... Candidate of Sciences (Engineering). Moscow. 2009. 25 p. (In Russian).

22. Endzhievskaya I.G., Vasilovskaya N.G., Gofman O.V., Koz’min A.D., Grigor’eva V.A. Fine-grained shotcrete with complex modifiers. <i>Sistemy. Metody. Tekhnologii</i>. 2018. No. 2, pp. 164–169. (In Russian).

23. GOST 310.4–81. Cements. Methods for determining the ultimate strength in bending and compression. (In Russian).

24. Dvorkin L.I., Dvorkin O.L. Raschetnoe prognozirovanie svoistv i proektirovanie sostavov betona [Computational prediction of properties and design of concrete compositions]. Moscow: Infra-Inzheneriya. 2019. 385 s.


Review

For citations:


Rezaev R.O., Dmitriev A.A., Cherniavsky D.V. Application of probabilistic approaches for the construction of «composition–property» models. Part II (Practice). Concrete and Reinforced Concrete. 2022;614(6):12-24. (In Russ.) https://doi.org/10.31659/0005-9889-2022-614-6-12-24

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0005-9889 (Print)
ISSN 3034-1302 (Online)