Preview

Concrete and Reinforced Concrete

Advanced search

Application of probabilistic approaches for the construction of “composition–property” models. Part I (Theory)

https://doi.org/10.31659/0005-9889-2022-612-613-4-5-25-37

Abstract

In a series of two articles, the concept of constructing probabilistic models of the properties of concrete mixtures and concrete in the space of possible compositions on given materials is discussed. In the first part of the article, the following concepts are introduced: the mathematical space of compositions with demonstration of examples of its construction for concrete mixtures for various purposes, the length of the correlation of composition properties, and a quantitative measure of the proximity of compositions, which makes it possible to postulate the continuity of their properties. Based on the methods of Bayesian statistics and machine learning, methods are proposed for the effective use of a priori information on the properties of raw materials, accumulated statistical data on the properties of concrete mixes/concrete, expressed in the form of various empirical dependencies and physicochemical models, for constructing probabilistic models. The algorithm presented in the article makes it possible to create economical experimental plans for constructing a multidimensional response surface in the space of possible compositions. Further work with the obtained response surface can be carried out by various methods, for example, by studying slices along the coordinate axes of interest in arbitrary planes or directions.

About the Authors

R. O. Rezaev
IFW Institute for Theoretical Solid State Physics; Tomsk Polytechnic University
Germany

Candidate of Sciences (Physics and Mathematics)

e-mail: rezaev.roman@gmail.com 



A. A. Dmitriev
Tomsk Polytechnic University
Russian Federation

Engineer



D. V. Chernyavsky
IFW Institute for Theoretical Solid State Physics
Germany

Candidate of Sciences (Physics and Mathematics)



References

1. Nevill’ A.M. Svoistva betona [Сoncrete properties]. Moscow: Stroyizdat. 1972. 344 p.

2. Akhverdov I.N. Osnovy fiziki betona [Fundamentals of concrete physics]. Moscow: Stroyizdat. 1981. 464 p.

3. De Larrard F. Concrete mixture proportioning. A scientific approach. London and New York, 1998. 448 p.

4. Sheikin A.E., ChekhovskiyYu.V., Brusser M.I. Struktura i svoistva tsementnykh betonov [Structure and properties of cement concretes]. Moscow: Stroyizdat. 1979. 344 p.

5. Zongjin L. Advanced concrete technology. Wiley. 2011. 528 p.

6. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology]. Moscow: AVS. 2003. 499 p.

7. Belov V.V., Kuriatnikov Iu.Iu., Novichenkova T.B. Tehnologiia i svoistva sovremennyh cementov i betonov [Technology and properties of modern cements and concretes]. Moscow: ASV. 2014. 280 p.

8. Dobshits L.M. Physical and mathematical model of destruction of concrete under alternate freezing and thawing. <i>Zhilishchnoe Stroitel’stvo</i> [Housing Construction]. 2017. No. 12, pp. 30–36. (In Russian).

9. Sheikin A.E. Stroitel’nye materialy [Construction materials]. Moscow: Stroyizdat. 1989. 432 p.

10. Dobshits L.M. Ways to improve the durability of concrete. <i>Stroitel’nye Materialy</i> [Construction materials]. 2017. No. 10, pp. 4–9. (In Russian).

11. Dobshits L.M. Frost resistance of concrete transport structures and ways to improve it. Doctor Diss. (Engineering). Moscow. 2000. 385 p. (In Russian).

12. Kobzar’ A.I. Prikladnaya matematicheskaya statistika dlya inzhenernykh i nauchnykh rabotnikov [Applied mathematical statistics for engineers and scientists]. Fizmatlit. 2012. 816 p.

13. Queipo N.V., Haftka R.T., Shyy W, Goel T., Vaidyanathan R., Tucker P.K., Surrogate-based analysis and optimization. <i>Progress in Aerospace Sciences</i>. 2005. Vol. 41, pp. 1–28.

14. Vinarskiy M.S., Lur’e M.V., Planirovanie eksperimenta v tekhnologicheskikh issledovaniyakh [Planning an experiment in technology research]. Kiev: Tekhnika. 1975. 168 p.

15. Dreiper N., Smit G., Prikladnoi regressionnyi analiz. Mnozhestvennaya regressiya [Applied regression analysis. Multiple regression]. Moscow: Dialektika. 2017. 912 p.

16. Zain M.F.M., Abd S.M. Multiple regression model for compressive strength prediction of high performance concrete. <i>Journal of Applied Sciences</i>. 2009. No. 9, pp.155–160.

17. Tao C., Kutchko B.G., Rosenbaum E., Massoudi M., A review of rheological modeling of cement slurry in oil well applications. <i>Energies</i>. 2020. Vol. 13. 570 p.

18. Dvorkin L.I., Dvorkin O.L. Raschetnoe prognozirovanie svoistv i proektirovanie sostavov betona [Computational prediction of properties and design of concrete compositions]. Moscow: Infra-Inzheneriya, 2019. 385 p.

19. Seruet A. A novel stability analysis of linear systems under asynchronous samplings. <i>Automatica</i>. 2012. Vol. 48, pp. 177–182.

20. Fikhtengol’ts G.M. Osnovy matematicheskogo analiza. Chast’ I [Fundamentals of mathematical analysis. Part I]. Saint Petersburg: Lan’. 2008. 448 p.

21. Olkin I., Gleser L.J., Derman C. Probability models and applications. MacMillan Publishing Company. 1999. 575 p.

22. Jordan M.I., Mitchell T.M., Machine learning: trends, perspectives, and prospects. <i>Science</i>. 2015. Vol. 349, pp. 255–260 p.

23. Weiwei J. Applications of deep learning in stock market prediction: recent progress. <i>Expert Systems with Applications</i>. 2021. Vol. 184. 115537.

24. Ausawalaithong W., Thirach A., Marukatat S., and Wilaiprasitporn T. Automatic lung cancer prediction from chest X-ray images using the deep learning approach. <i>11th Biomedical Engineering International Conference (BMEiCON)</i>. 2018, pp. 1–5.

25. Green P.J., Latuszynski K., Pereyra M., Robert C.P. Bayesian computation: a summary of the current state, and samples backwards and forwards. <i>Statistics and Computing</i>. 2015. Vol. 25, pp. 835–862.

26. Kanamarlapudi, L., Jonalagadda K.B., Jagarapu D.C.K. et al. Different mineral admixtures in concrete: a review. <i>SN Applied Sciences</i>. 2020. No. 2. 760.

27. Glekel’ F.L. Fiziko-khimicheskie osnovy primeneniya mineral’nykh dobavok [Physical and chemical bases of application of mineral additives]. Tashkent: FAN. 1975. 198 p.

28. Mehta P.K. High performance, high-volume fly ash concrete for sustainable development. University of California, Berkeley, 2004.

29. Wang Y. and McDowell D.L. (ed.) Uncertainty quantification in multiscale materials modeling. Woodhead Publishing, 2020. 586 p.

30. Eggwertz S., Lind N.C. (ed), Probabilistic methods in the mechanics of solids and structures. Berlin: Springer-Verlag. 1985. 610 p.

31. Izotov V.S., Sokolova Yu.A. Khimicheskie dobavki dlya modifikatsii betona [Chemical additives for concrete modification]. Moscow: Paleolit. 2006. 244 p.

32. Birkgof Dzh. Dinamicheskie sistemy [Dynamic systems]. Moscow: OGIZ. 1999. 480 p.

33. Baule A., Morone F., Hermann H.J., Makse H.A. Edwards statistical mechanics for jammed granular matter. <i>Reviews of modern physics</i>. 2018. Vol. 90. 015006.

34. Repin V.G., Tartakovskii G.P. Statisticheskii sintez pri apriornoi neopredelennosti i adaptatsiya informatsionnykh system [Statistical synthesis under a priori uncertainty and adaptation of information systems]. Moscow: Sovetskoe radio. 1977. 432 p.

35. Chidiac S.E., Moutassem F., Mahmoodzadeh F., Compressive strength model for concrete. <i>Magazine of Concrete Research</i>. 2013. Vol. 65, pp. 557–572.

36. Belov V.V. Teoreticheskoe obosnovanie optimal’nykh zernovykh sostavov kompozitsionnykh materialov s mineral’nymi napolnitelyami. <i>Stroitel’stvo i rekonstruktsiya.</i> 2017. No. 5, pp. 94–101. (In Russian).

37. Kwan A.K.H. Combined effect of water film thickness and paste film thickness on rheology of mortar. <i>Materials and Structures</i>. 2012. Vol. 45, pp. 1359–1374.


Review

For citations:


Rezaev R.O., Dmitriev A.A., Chernyavsky D.V. Application of probabilistic approaches for the construction of “composition–property” models. Part I (Theory). Concrete and Reinforced Concrete. 2022;612-613(4-5):25-37. (In Russ.) https://doi.org/10.31659/0005-9889-2022-612-613-4-5-25-37

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0005-9889 (Print)
ISSN 3034-1302 (Online)