Preview

Concrete and Reinforced Concrete

Advanced search

Present methods for AAR estimating

https://doi.org/10.31659/0005-9889-2022-612-613-4-5-15-24

Abstract

The paper considers the existing restrictions of the current edition of GOST 8269.0–97 «Crushed stone and gravel from dense rocks and industrial waste for construction work. Methods of physical and mechanical tests» in the evaluation of the reactivity of rocks and crushed stone of fundamental importance in terms of durability of buildings and structures made of concrete and reinforced concrete. The approaches to an estimation of reactivity of aggregates for concrete, established in normative-technical documents of the leading international and national standardization organizations, are shown. There has been analyzed the principle possibility of producing the algorithm of the complex estimation of the aggregates reactivity for concrete and choosing the strategy of reduction of the internal concrete corrosion risk depending on operating conditions, presumed service life and responsibility level of the structures.

About the Authors

V. R. Falikman
Research, design and technological institute of concrete and reinforced concrete (NIIZhB) named after A.A. Gvozdev, Scientific Research Center «Construction»
Russian Federation

Doctor of materials science

e-mail: vfalikman@yandex.ru 



P. N. Sirotin
Research, design and technological institute of concrete and reinforced concrete (NIIZhB) named after A.A. Gvozdev, Scientific Research Center «Construction»
Russian Federation

Engineer

e-mail: pn.sirotin@yandex.ru 



References

1. Rozental’ N.K., Lyubarskaya G.V. Corrosion of concrete

2. by alkali interaction with silica in aggregate. <i>Beton i zhelezobeton</i> [Concrete and Reinforced Concrete]. 2012. T. 1. №. 6. pp. 50–60. (In Russian).

3. Petrova T.M., Sorvacheva Yu.A. Internal corrosion of concrete as a factor of the durability decreasing of transport construction objects. <i>Nauka i transport. Transportnoe stroitel’stvo</i>. 2012. Vol. 4, pp. 56–60. (In Russian).

4. Stanton T.E. Expansion of concrete through reaction between cement and aggregate. <i>Transactions of the American Society of Civil Engineers.</i> 1942. Vol. 107. Iss. 1. https://doi.org/10.1061/TACEAT.0005540

5. Bogue R.H. The chemistry of Portland cement. New York: Reinhold Publishing Corporation. 1947. 572 p.

6. Kühl H. Zement-Chemie. B. 1–3. Berlin: Verlag Technik Gmbh. 1951. 306 p.

7. Sims I., Poole A.B. (ed.). Alkali-aggregate reaction in concrete: A world review. CRC Press. 2017. 767 p. https://doi.org/10.2991/978-94-6239-157-4-25

8. Reschke T. Untersuchungen und instandsetzung von wasserbauwerken, die infolge einer alkali-kieselsäure reaktion geschädigt sind. Beton. 2004. Vol. 54. No. 1, pp. 14–21.

9. Stark J., Freyburg E., Seyfarth K., Giebson C., Erfurt D. 70 Jahre AKR und keine Ende in Sicht? <i>International Baustofftagung IBAUSIL</i>. Weimar. 2009. Tagungsbericht Band 2, pp. 255–260.

10. Blight G.E., Alexander M.G. Alkali-aggregate reaction and structural damage to concrete: engineering assessment, repair and management. CRC Press. 2011. https://doi.org/10.1201/b10773

11. Thomas M.D.A. et al. Alkali-aggregate reactivity (AAR) facts book. United States. Federal Highway Administration. Office of Pavement Technology, 2013. №. FHWA-HIF-13-019. ttps://www.fhwa.dot.gov/pavement/concrete/asr/pubs/hif13019.pdf

12. Fernandes I. et al. (ed.). Petrographic atlas: characterisation of aggregates regarding potential reactivity to alkalis: RILEM TC 219–ACS recommended guidance AAR–1.2, for use with the RILEM AAR–1.1 petrographic examination method. Springer, 2016. Vol. 20. https://doi.org/10.1007/978-94-017-7383-6.

13. Moskvin V.M., Royak G.S. Korroziya betona pri deistvii shchelochei tsementa na kremnezem zapolnitelya [Corrosion of concrete under interaction of cement alkalis and the aggregate active silica] Moscow: Gosstroyizdat. 1962. 164 p.

14. Falikman V.R., Rozentahl N.K. Russian Federation. In “Alkali-aggregate reaction in concrete: A world review” (ed. by Sims I., Poole A. B.). CRC Press. 2017, pp. 433–466.

15. Zolotykh E.B. Typification of potentially reactive minerals from non-metallic building material deposits. Scientific and technical report. <i>VNIIPIStromsyryo</i>. Moscow. 1990. 90 p.

16. Morozova N.N., Khozin V.G., Mateyunas A.I., Zakharova N.A., Akimova E.P. Problem of alkali corrosion of concretes in the Republic of Tatarstan and the ways of its handling. <i>Izvestiya KGASU</i>. 2005. No. 2, pp. 58–63.

17. Falikman V.R., Sirotin P.N. Review of approaches to standardization of coarse aggregate quality in foreign standards. <i>Promyshlennoe i grazhdanskoe stroitel’stvo</i>. 2022. No. 4, pp. 64–73. DOI: 10.33622/0869-7019.2022.04.64-73

18. Falikman V.R. GLOBE as a new initiative in the field of sustainable construction by specialized international organizations. <i>Beton i Zhelezobeton</i> [Concrete and Reinforced Concrete]. 2020. No. 2 (602), pp. 3–7. (In Russian).


Review

For citations:


Falikman V.R., Sirotin P.N. Present methods for AAR estimating. Concrete and Reinforced Concrete. 2022;612-613(4-5):15-24. (In Russ.) https://doi.org/10.31659/0005-9889-2022-612-613-4-5-15-24

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0005-9889 (Print)
ISSN 3034-1302 (Online)