The nature of destruction of layered porous materials in the structures of cultural heritage sites
https://doi.org/10.37538/0005-9889-2025-2(627)-54-62
EDN: RPQXZP
Abstract
Introduction. The article presents the results of determining the properties of layered porous materials selected from the depths of the structures of cultural heritage sites, which are more or less susceptible to long-term exposure to moisture. The obtained data are compared with the properties of new materials used in similar structures and other objects according to literary sources.
Aim. Identification of signs of changes in the properties of layered porous materials occurring not only in the surface layer, but also throughout the entire depth of the structure.
Materials and methods. The presented studies are based on the results of the author's tests of more than 2,500 samples of materials from 24 architectural monuments of different times and locations that are under the long-term influence of adverse operational factors.
Results. The results show that, unlike homogeneous materials, the destruction of layered systems does not occur in layers, starting from the surface, but simultaneously throughout the entire volume of the structure.
Conclusions. A significant change in the properties of materials in all studied areas shows that, unlike homogeneous materials, the destruction of layered systems does not occur in layers, but in the volume of the entire depth of the structure.
About the Author
E. V. SheikinRussian Federation
Evgeny V. Sheikin, Head of the Sector for Diagnostics of Humidity and Structural condition of Structures, Central Scientific and Restoration Design Workshops; Applicant, JSC Research Center of Construction, Moscow
e-mail: evg.sheykin@gmail.com
References
1. Ahmad A., Simon S., Middendorf B. Stone properties and damage induced by salt crystallisation in some jordanian Stones. <i>12th International Congress on the Deterioration and Conservation of Stone</i>. New York, 2012.
2. Cardell C., Benavente D., Rodríguez-Gordillo J. Weathering of limestone building material by mixed sulfate solutions. <i>Characterization of stone microstructure, reaction products and decay forms. Materials Characterization</i>. 2008, vol. 59, no. 10, pp. 1371–1385.
3. Colas E. Impact de l’humidité et des solutions salines sur le comportement dimensionnel de grès du Buntsandstein: contribution à la sélection de faciès de restauration. Université de Reims Champagne-Ardenne, 2011, 274 p.
4. Cultrone G., Sebastián E. Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials. <i>Environmental Earth Sciences</i>. 2008, vol. 56, no. 3, pp. 729–740. DOI: https://doi.org/10.1007/s00254-008-1332-y
5. Franke W.A. The durability of rocks – Developing a test of rock resistance to chemical weathering. <i>American Journal of Science</i>. 2009, vol. 309, no. 8, pp. 711–730. DOI: https://doi.org/10.2475/08.2009.04
6. Kamh G.M.E., Oguchi C., Watanabe K. Factors controlling salt susceptibility and alteration indices on salt weathering of oolitic limestone using single salt at five weathering regimes, a case study. <i>Restoration of Buildings and Monuments</i>. 2013, vol. 19, no. 6, pp. 393–416. DOI: https://doi.org/10.1515/rbm-2013-6625
7. Kozlowski R., Magiera J., Weber J., Haber J. Decay and conservation of Pińczów porous limestone. I. Lithology and weathering. <i>Studies in Conservation</i>. 1990, vol. 35, no. 4, pp. 205–221.
8. Labus M., Bochen J. Sandstone degradation: An experimental study of accelerated weathering. <i>Environmental Earth Sciences</i>. 2012, vol. 67, no. 7, pp. 2027–2042. DOI: https://doi.org/10.1007/s12665-012-1642-y
9. Molina-Piernas E., Benavente D., Sebastián E., Cultrone G. The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). <i>Engineering Geology</i>. 2015, vol. 197, pp. 67–81. DOI: https://doi.org/10.1016/j.enggeo.2015.08.009
10. Navarre-Sitchler A.K., Cole D.R., Rother G., Jin L., Heather L.B., Brantley S.L. Porosity and surface area evolution during weathering of two igneous rocks. <i>Geochimica et Cosmochimica Acta</i>. 2013, vol. 109, pp. 400–413. DOI: https://doi.org/10.1016/j.gca.2013.02.012
11. Nieminen P., Romu M. Porosity and frost resistance of clay bricks. <i>Brick and Block Masonry</i>. Elsevier / ed. De Courcy J.W. London, UK. 1988, vol. 1, pp.103–109.
12. Stryszewska T., Kańka S. Microstructure of ceramic brick contaminated by magnesium sulphate. <i>Advances in Science and Technology</i>. 2014, vol. 92, pp. 203–208. DOI: https://doi.org/10.4028/www.scientific.net/AST.92.203
13. Thomachot C. Modifications des propriétés pétrophysiques des grès soumis au gel ou recouverts "d’encroûtements noirs vernissés". Thèse de doctorat, Université Louis Pasteur, 2002.
14. Walbert C. Endommagement par le gel de pierres calcaires utilisées dans le patrimoine bâti: étude du comportement hydromécanique. Thèse de doctorat, Université de Cergy-Pontoise, 2015, 188 p.
15. Přikryl R., Melounová L., Varilova Z., Weishauptová Z. Spatial relationships of salt distribution and related physical changes of underlying rocks on naturally weathered sandstone exposures (Bohemian Switzerland National Park, Czech Republic). <i>Environmental Earth Sciences</i>. 2007, vol. 52, no. 2, pp. 409–420. DOI: https://doi.org/10.1007/s00254-006-0589-2
16. Tang Y., Shao Z., Xu T. Pore structure of ancient Chinese bricks under environmental vicissitudes. <i>KSCE Journal of Civil Engineering</i>. 2016, vol. 20, no. 5, pp. 1895–1902. DOI: https://doi.org/10.1007/s12205-015-0652-1
17. Wetzel A., Einsele G. On the physical weathering of various mudrocks. <i>Bulletin of Engineering Geology and the Environment</i>. 1991, vol. 44, no. 1, pp. 89–100. DOI: https://doi.org/10.1007/BF02602713
18. Adamovič J., Mikuláš R., Schweigstillová J., Boehmova V. Porosity changes induced by salt weathering of sandstones, Bohemian Cretaceous Basin, Czech Republic. <i>Acta Geodynamica et Geomaterialia</i>. 2011, vol. 8, no. 1. pp. 29–45.
19. Angeli M., Bigas J.-P., Menéndez B., Hébert R.L., David C. Influence of capillary properties and evaporation on salt weathering of sedimentary rocks. <i>Heritage Weathering and Conservation</i>, Madrid, Spain, 2006, pp. 253–259.
20. Jeannette D. Importance of the pore structures during the weathering process of stones in monuments. In: Soils and Sediments. Springer, Berlin, Heidelberg, 1997, pp. 177–190. DOI: https://doi.org/10.1007/978-3-642-60525-3_9
21. Beck K. Étude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité. Université d’Orléans, 2006, 244 p.
22. Fookes P.G., Gourley C.S., Ohikere C. Rock weathering in engineering time. <i>Quarterly Journal of Engineering Geology and Hydrogeology</i>. 1988, vol. 21, no. 1, pp. 33–57. DOI: https://doi.org/10.1144/gsl.qjeg.1988.021.01.03
23. Graue B., Siegesmund S., Middendorf B. Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. <i>Environ Earth Sci.</i> 2011. vol. 63, pp. 1799–1822. DOI: https://doi.org/10.1007/s12665-011-1077-x
24. Garcia-Fernandez C.C. et al. Effect of environmental relative humidity in the tensile strength of layering in slate stone. <i>Bulletin of Engineering Geology and the Environment</i>. 2020, vol. 79, pp. 1399–1411. DOI: https://doi.org/10.1007/s10064-019-01619-7
Review
For citations:
Sheikin E.V. The nature of destruction of layered porous materials in the structures of cultural heritage sites. Concrete and Reinforced Concrete. 2025;627(2):54-62. (In Russ.) https://doi.org/10.37538/0005-9889-2025-2(627)-54-62. EDN: RPQXZP